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FOREWORD

This report was prepared for the Aerospace Power Division, Aaro
Propulsion Laboratory, Wright-Patterson AF3 (AFWAL/P00), by the Aers-
nautical Systems Division (ASD/XOR) Air Force Reserve Houston Detachment.
The report summarizes a study which began in March 1980. The objective
of this study was threefold: 1) evaluate the McClellan Air Force Base
Radar Approach Control (RAPCON) facility as a potential site to opera-
tionally field test two 40-kW fuel cells; 2) investigate alternate
methods to integrate the fuel cells into that facility; and 3) determine
the most expeditious method to implement installation of the fuel cells.

In gathering information for this study, members of the Houston
Reserve Datachment visited McClellan AFB to discuss operational
constraints with the FAA personnel in charge of the RAPCON facility.
Details of the building systems were reviewed with representatives from
the McClellan Civil Engineering office and the existing utility system
was checked against available facility drawings. Houston Reserve Detach-
ment representatives also traveled to the United Technologies Corporation
(UTC) Power System Division manufacturing facility in Hartford,
Connecticut, to receive detailed briefings on the design, manufacture,
and operation of the 40-kW fuel cells.

This roport was submitted by the Aero Propulsion Laboratory, under
project/task/work unit 31452422 with First Lieutenant Richard G.
Honneywell as project engineer.

The Houston ASD Reserve Detachment wishes to express its appreciation
to the personnel of the Sacramento Air Logistics Center, United Tech-
nologies Power Systems Division, and Air Force Wright Aeronautical
Laboratory for their assistance in this study.

Accessicn Tar
NT!S r7.x1
| Pris pos
{ U arneines g

! P
J J ‘{li:r“‘.‘tir—l‘*“‘-——g._.
i

U\N

- B

Apiltributicﬁ/

Availability Codes

JAvail and/op
Dist Spscial

AL

SRR




FWAL-TR-83-2012

SECTION

[II

Iv

Vi

VII

VIII

TABLE OF CONTENTS

INTROOUCTION

TEST SITE DESCRIPTION

Structure

Climate

Utilities

Electrical System

HVAC Mechanical System

HVAC Control System

Domestic Hot Water System

. Modification Project SMA 62-9
FUEL CELL DESCRIPTION

1. Plant Description

2. Process Description

3. By-Product Heat Recovery

FUEL CELL/INTEGRATION CONCEPTS

1. Electrical

2. Heating

3. Cooling

INSTRUMENTATION

FUEL CELL MODIFICATIONS

1. Water Pump Mechanical Shaft Seals
2. Exhaust Gas Fans

3. High-Grade Heat Exchanger Solenoid Operated Valve
4. Low-Grade Heat Exchanger
EVALUATION OF INTEGRATION CONCEPTS
1. Electrical

2. Heating

3. Cooling

IMPLEMENTING ORGANIZATIONS

0 ~N O OV & W N
s & e e e & =

PAGE

Y N W W W W r

£ 5 oW W NN NN N NN N
O O 0 O WO Y OO

&8 &3 &

o W
(SN I o




AFWAL-TR-83-2G12
TABLE OF CONTENTS (Concluded)
SECTION PAGE

IX CONCLUSIONS/RECOMMENDATIONS 54

1. Site Suitability 54 -
: 2. Other Considerations 54
f 3. Recommended Installation Concept 54
' 4. Project Implementation 55
REFERENCES 56

.
:j
o

.

3 §

vi

e e el —_ms;»;;;.iic.ﬁl—ﬁ'sﬁi

e LT " PN NERIS_ S e %




e ST T T

AFWAL-TR-83-2012

e 6 e e T
37,

LIST OF ILLUSTRATIONS

FIGURE PAGE
: 1 McClellan AFB RAPCON Facility

: Electrical Power Distribution Schematic 6
§ 2 Block Diagram Test Site Hot Water System 9
E ) 3 Block Diagram Test Site Chilled Water System 11
. 4 Control Schematic AC-1 14
5 Control Schematic AC-3 15
6 Control Schematic AC-2 17
7 Cortrol Schematic AC-4 19
8 Simplified Block Diagram of 40-kW Fuel Cell Z2
9 Heat Recovery System Qiagram 22
10 Major Component Locations 23
11 Power Plant Dimensions 23
12 Power Plant Schematic 24
13 Low-Grade Heat Exchanger Performance 27
14 High-Grade Heat Availability 28
15 Modified Grid-Connect Single-Line Diagram 30

16 Test Site Hot Water System Block Diagram
Modified to Reflect Fuel Cell Heat Recovery 33
16a Return Water Heating (Option 1) 34
16b Return Water Heating (Option 2) 35

17 New Duct Mounted Heat Exchanger-Hot Water
Supplied from Fuel Cell 37

18 Block Diagram I1lustrating Fuel Cell Heat

and Absorption Chillers to Augment Existing
Cooling System 40

vii

iy e

ST e I




TR AR TR K L

pon ¥ bl b
L ey b . g o 0 ) XAl AT 0 a1

P A

AFWAL-TR-83-2012

LIST OF TABLES

TABLE
1 McClellan AFB RAPCON Facility Utility Usage
Test Site Facility HVAC System Design Specifications
3 Instrumentation Information Plan
4 Facility Power Requirements Using Two 40-kW Fuel Cells
5 Total Utility Cost Comparison

viii

PAGE

44
50
52



e mem L e memaena e D wn s =

AFWAL-TR-83-2012

SUMMARY

In recent years the concept of fuel cell power plants has received
considerable attention as a new option for providing the thermal and
electrical energy requirements of residential, commercial, and industrial
buildings. Fuel cells are efficient energy conversion devices and are
typically located in or near the facility being supplied power. As a
result, large electrical transmission losses are eliminated and the heat
produced in the power generation process can be used to meet the thermal
needs of the facility. In addition, environmental pollution problems
associated with fuel cell usage are minimal.

The purpose of this study is to evaluate the McClellan Air Force
Base Radar Approach Control (RAPCON) Facility as a site to operationally
field test two 40kW fuel cells and to develop concepts from which detailed
installation specifications and field construction plans can-be generated.

The study presents several alternative means of utilizing fuel cell
electrical and thermal output and compares the various alternatives
against installation cost, operating cost, reliability, and total energy
utilization. A site utility system description is presented along with
an explanation of the fuel cell plant. Several fuel cell modifications
are also suggested and site instrumentation requirements are summarized.

The study finds the McClellan facility to be an acceptable site for
fuel cell testing. Although utility costs will increase in the facility
if the cells are installed (low cost hydro-electric power vs. higher
priced natural gas produced electrical power), these costs are outweighed
by other factors such as minimal facility modification costs, site
environmental conditions, and availability of skilled maintenance
personnel,

ix




AFWAL-TR-83-2012

SECTION I
INTROOUCTION

Considerable effort has been made in recent years to produce elec-
trical energy more efficiently. This effort has been accelerated by the
acknowledgement of the limitec reserves of fossil fuels, especially
natural gas and oil. In addition to efficiency, environmental impact,
reliability, 1ife cycle costs, and fuel availability are also important
when considering alternative energy generation techniques.

The fuel cell is one high efficiency generation system under con-
sideration by the Department of Energy (DOE) which appears to satisfy
the above requirements. DOE estimates that in the near term fuel cell
technology could save this nation 270,000 barrels of oil equivalents per
day, which corresponds to approximately one billion dollars in foreign
imports per year (Reference 1). While the principles of the fuel cell
have been known since 1801, it was only in recent years that commercially
practical units have developed.

In 1974, a pilot 40-kW fuel cell on-site power plant was designed
and fabricated by the Power Systems Division of United Technologies
Corporation (UTC). This power plant was tested, and found to have many
of the operating characteristics required for commercial service. As a
result of these successful preliminary tests, the national Fuel Cell
Operational Feasibility Program was conceived. This program proposed to
evaluate a number of the 40kW units in operational environments.

Participants in this program (natural gas and electrical utility
companies, the Gas Research Institute, and Department of Defense) are
currently evaluating potential sites which can be used in a one-year
test program scheduled to start in FY83.

Coordination of the Air Force portion of the DOD effort has been
assigned to the Air Force Wright Aeronautical Laboratories, Aerospace
Division (AFWAL/POOC) Wright-Patterson AFB, QH. AFWAL/POOC will manage
the installation and operation of two 40-kW fuel cells at selected Air
Force installations. During the site selection phase of this project,




AFWAL-TR-83-2012

AFWAL/POOC requested that the Aeronautical Systems Division Reserve
Program Office (ASD/XOR) prepare an evaluation of one potentiai fuel
cell installation site.

This report is prepared by a group of ASD/XOR Reserve Officers and
evaluates the RAPCON Facility at McClellan Air Force Base as a potentizl
site for fuel cell installation. The report evaluates the feasibility
of using two 40-kW fuel cells to provide the electrical and thermal
requirements of the RAPCON facility and determines if fuel cell use would
be advisable from a cost, efficiency, and reliability standpoint. The
report contains descriptions of the fuel cells and proposed site. The
facility requirements for electrical and thermal energy are compared
against fuel cell outputs and operating costs of the cells are compared
against purchased power costs. Several fuel cell installation concepts
are presented. CEach concept is evaluated against installation costs,
operating costs, reliability, and total facility energy usage. Several
fuel cell modifications are also suggested. Two approaches for developing
detailed design specifications are presented as well as suggestions for
implementing the construction phase of the project.
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SECTION II

TEST SITE DESCRIPTION

1. STRUCTURE

The test site under consideration for the on-site fuel cell demon-~
stration project is Building 1099 located at McClellan Air Force Base.
The building is located in a remote area of the base with easy access by
several roads. This two story concrete, masonry structure was constructed

in 1962, and enlarged in 1972. Modifications were incorporated in 1975
and 1977,

The building contains approximately 13,000 square feet of floor
space and is used as a Federal Aviation Administration Radar Approach
Control Station (RAPCON). The building contains computers, radar display
consoles, communication equipment, maintenance shops, office space, and
mechan ‘cal equipment rooms containing neating-ventilation-air conditioning
(HVAC) systems and emergency power generation equipment. The egquipment
rooms are iocated at one end of the building on the lower level with
easy outside access.

2. CLIMATE

The test site is located near Sacramento, California in an area of
moderate climatic conditions. 'Temperatures are generally miid with ro
extreme seasonal variations. Humidity levels are low and the area is
characteristically one of low winds, low rainfall and no snow.

3. UTILITIES

The Sacramento Utility District supplies natural gas and electrical
power for all the building's energy reguirements except emergency back-

up electrical power which is furnished by a diesel-driven electrical
generator.

The quantities of electrical power and natural gas consumed during
ten consecutive months of building operation in 1979 are shown in Table
1. The second column of this table shows the amount of gas (in therms)
delivered to the boilers during each month of the period. The third
column i< based on boiler efficiency and shows the heat actually delivered

Lt 14 ot e e
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to the building through the HVAC system. The corresponding costs of
electrical power and natural gas are also shown.

4. ELECTRICAL SYSTEM

The facility's electrical requirements are supplied by the Sacramento
Utility District's 12,000-volt service. This service is connected to
the primary side of the facility's 225~kVA transformer, with the secondary
side of the transformer (120/208 volt, 30, 60 Hz) connected to the build-
ing's main switchboard through an 800 amp circuit breaker. A three-
phase, four-conductor system is used throughout the main switchboard.

Two buses are connected to the building side of the 800-amp circuit
breaker. The "normal" bus is rated at 80C amps and the "emergency" bus
is rated at 600 amps. Under normal conditions, the "emergency" bus is
connected to the incoming service through an automatic transfer switch.
In the event commercial power is lost, the transfer switch is auto-
matically repositioned and supplies power to the "emergency" bus from
the back-up power system. The "normal" bus is not supplied by the
emergency power system during loss of commercial power.

Low-voltage sensing circuits detect loss of commercial power and
automatically start the emergency diesel generator by means of storage
batteries. Timer circuits trip the automatic transfer switch when the
generator has reached operating speed and can carry the load. This
transfer takes place within a few seconds after loss of commercial power.

A schematic of the facility's electrical power distribution system
is shown in Figure 1.

5.  HVAC MECHANICAL SYSTEM

Building humidity and temperature are maintained by a conventional
forced-air circulation system. Major components of this system include
air handlers and associated distribution ducting, hot water boilers,
water chillers, and integrating controls. The system uses a hot
water/chilled water system to dehumidify air by cooling and then reheating
the air to maintain the temperature required in various areas of the
facility.
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a. Air Conditioning/Distribution System

The air conditioning/distribution system consists of four air
handlers with associated distribution and return air ducting. Two unit
heaters, and one finnea-tube radiator are also included in the system.
The air handlers are equipped with both hot and chilled-water coils,
while the two unit heaters and the finned-tube radiator are equipped
with only hot-water coils. The air handlers are installed in various
locations in the building. Air handlers AC-1 and AC-2 are located in
the equipment room, AC-3 is located above a suspended ceiling, and AC-4
is located on the roof. One of the unit heaters is located in the
generator room and the other in the equipment room. The finned-tube
radiator is located in one of the second floor restrooms. The air handlers
are equipped with distribution, return, and fresh air intake cucts while
the unit heaters and radiator ars mounted in the area tn be heated and
are not equipped with air distribution ducts. Air handlers AC-1 and AC-
3 provide conditioned air to single zones and AC-2 and AC-4 provide con-
ditioned air to multiple zones in the building. Table 2 lists design
specifications for eacn of the HVAC components.

Humidistats and thermostats automatically control the fresh
air intake damper positions on the air handlers to minimize the heating
and cooling ioads. Thic control allows large quantities of outside air
to be admitted into the building during moderate temperature/humidity
periods, but restricts outside ai- intake during extreme temperature/

humidity periods when large amounts of heating or cooling would be required.

b. Hot Water System

The HVAC hot water system is described in Figure 2. This system
utilizes two natural gas boilers (one located in the equipment room,
rated at 350,000 Btu/hr output and the other located in a temporary sheet
metal structure adjacent to the equipment room rated at 672,000 Btu/hr
output). Natural gas for the boilers is supplied by a Sacramento Utility
District underground pipeline at 6.0 inches of water pressure and at
rates up to 600 standard cu. ft./hr.

The two boilers are connected in series. If one boiler is
unable to supply the required heat, the second boiler is used to increase

3 S = am ¥ o — i e UM ——
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the temperature of the water supplied by the first boiler., Thermostats
control the boilers to maintain an outlet water temperature between
190% and 200°F. Return water temperatures usually rainge from 150% to
170°¢,

In addition to the boilers, other major components included in
the hot water system are six hot water circulation pumps, an expansion
tark, pneumatic charge connection, a water make-up line, chemical additive
tank, manually operated flow restriction valves, and preumatically
operated flow control valves.

Hot water is supplied to each of the four air handlers by an
individual hot-water circulation pump. A separate circulation pump
supplies hot water to the two unit heaters and the finned-tube radiator.
The expansion tank, pneumatic charge connection, and water make-up line
are used to control thermal expansion, system pressure, and water level
in the hot-water system.

Manually operated flow restriction valves provide a means to
adjust the water flow rates through the unit heaters and the finned-tube
radiator. Pneumatically operated flow control valves automatically
control the amount of hot water passing through each air handler heating
coil as a function of the required heating load,

¢, Chilled Water System

The chilled water system is described in Figure 3. Chilled
water is supplied by three electric motor-driven, reciprocating compres-
sor, chilled-water units. Two units are rated at 25 tons each and the
third is rated at 23 tons. The two 25-ton units are located in the equip-
ment room and employ water cooling towers to control condenser
temperatures. The 23-ton unit is located outside of the building and
uses an air-cooled condenser. All three units are connected in parallel
and are sequentially started by a master controller depending on the
facility cooling load. The master controller maintains the chilled water
supply temperature at 48% 2ad the return water temperature at 58%F.

The system also contains expansion tanks, water make-up lines,
pneumatic charge connections, chemical additive tanks, chilled water

10
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circulating pumps, manually operated flow restriction valves, and
pneumatically operated flow control valves.

6. HVAC CONTROL SYSTEM

E

The HVAC control system controls building temperature, humidity,
and fresh air intake. This system uses a combination of thermostats,
humidistats, temperature controllers, modulating dampers, pneumatically
operated bypass valves, relays, contacts, load analyzer, etc. to maintain
the required environmental conditions throughout the facility.

a. Unit Heaters and Radiator

Unit heaters UH-1 and UH-2 and radiator HR-1 are manually
controlled. When heat is required in the generator room, equipment room,
or suppliemental heat is required in the upstairs restroom, the hot-water
supply pump HP-4 is manually started. The hot-water flow rate to each
unit is present by a manually adjustable restriction (balance) valve in
' each unit's return water line. Electric fans force air through the
%y heating coils in the two unit heaters while natural convection provides
3 air movement through the radiator.

b. Air Handler Units

Identical control systems regulate the quantity of fresh air
supplied to the four air handlers and maintain system pressure witnin
the facility. Two air handlers are single rone units and are controlled
by thermostats located in their respective zones. The remaining two
air handlers are multizone units. Both units are controlled by individual
zone thermostats, however, une unit incorporates a load analyzer in the
control loop. In all units, temperature of the return air to each air
handler is regulated by a modulating duct thermostat. This thermostat
is located downstream of the return air and fresh air intake duct con-
nections, but upstream of the heating or cooling coils. This thermostat
operates a damper position motor which controls the amount of fresh air
admitted into the air handler. At Ins outside air temperatures, the
dampers are positioned for minimum outside air intake and maximum raturn
air flow to the heating coils. As outside air temperature rises, the
thermostat gradually opens the outside-air damper and c¢loses the return-
air damper until only outside air is supplied to the coils. When outside

12
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air temperature reaches approximately 64°F, the outside-air damper is
fully open and remains in this position until the outside air temperature
rises to 80°F. At that temparature, a master two-position outside-air
duct thermostat reverses the action of the modulating duct thermostat

and begins to close the outside-air damper as the outside air temperature
continues to rise.

A modulating duct humidistat overrides the modulating duct
thermostat and closes the outside-air damper when the return air relative
humidity rises above 50%.

A manual damper select switch can be used to override the
modulating duct thermostat. When sr. in the "normal" position, the
modulating duct thermostat controls the damper positions if not overridden
by the duct humidistat. When set in the "emergency” position, the outside
air damper is returned tc the minimum open position.

Positive air pressure within the facility is maintained at
0.1" of water by means of a relief exhaust damper.

Air handling units AC-1 and AC-3 are single-zone units. Output
air temperature from each unit is controlled by a thermostat located in
the zone served by the unit. This zone thermostat gradually opens the
heating coil water valve as the room temperature falls below the set
point and controls the cooling coil water valve through a diverting relay.
The cooling coil water valve is also controlled by the humidistat. When
the return air exceeds 50% relative humidity, the humidistat gradually
opens the cooling coil water valve.

A switch mounted on the heating coil water valve stops the air
handler hot-water circulating pump when the valve reaches the closed
position (no heat input required). A similar switch is not provided on
the cooling coil water valve since each chilled-water ¢irculating pump
provides chilled water to more than one air handler. Schematics describ-
ing the operation of AC-1 and AC-3 are provided in Figures 4 and 5.

Air handing unit AC-2 is a multi-zone unit that provides
conditioned air to three zones in the building. Delivered air temperature
to each zone is controlled independently by individual zone thermostats.

A submaster modulating duct thermostat maintains the hot deck temperature
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ATR CONDITIONING UNIT AC-1 CONTROL

McClellan AFB, CA.
Radar Approach Control Facility

Control System for Air conditioning Unit AC-1:

(A) Mixed air temperature is controlled by modulating duct thermostat

T-2 which, at winter design temperature, operates damper motor M-1, for
minimum outside air and maximum return air. As outside air temperature
rises, T-2 gradually opens the outside air damper and closes the return
air damper until Bhe outside air damper is wide open when the set point
(approximately 64°F) is reached. Master two- poswt1on outside air duct
thermgstat T-3 reverses action of T7-2 when outside air temperature rises
to 80°F

(B) Zone heating thermostat T-1 gradually opens heating ccil valve
HV-1 as room temperature falls below set point ang shall operate cooling
coil valve through relay to maintain spaces at 80°F. Auxiliary switches
stop coil circulating pumps when valve reaches the position of no heat
required.

(C) Modulating duct humidistat H-l over-rides temperature controller
T-2 to close outside air damper first and then opens cooling coil valve
CV-1 as return air relative humidity rises above 50 percent. Humidistats
shall be adjustable to maintain space at a minimum of 35 percent relative
humidity,

(D) Relief exhaust damper maintains a positive pressure of 0.1 inch
in the system.

(E) Manual switch X-1 positions dampers as required by T-2 when set

at “normal“--when set on “emergency", bypasses temperature controller 7.2
and opens outside air damper to minimum position.

Figure 4. Control Schematic AC-1
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AIR CONDITIONING UNIT AC-3 CONTROL
McClellan AFB, CA.
Radar Approach Control Facility

Control System for Air conditioning Unit AC-3:

(A) Mixed air temperature is controlled by modulating duct thermostat
T-12 which, at winter design temperature, operates damper motor M-6, for
minimum outside air and maximum return air. As outside air temperature
rises, T-12 gradually opens the outside air damper and closes the return
air damper until Bhe outside air damper is wide open when the set point
(approximately 64°F) is reached. Master two-position outside air duct
thermggtat T-3 reverses action of T-12 when outside air temperature rises
to 80°F.

(B8) Zone heating thermostat T-11 gradually opens heating zoil valve
HV-3 as room temperature falls below set point ang shall operate cooling
coil valve through relay to maintain spaces at 80°F. Auxiliary switches
stop coil circulating pumps when valve reaches the pcsition of no heat
required.

(C) Modulating duct humidistat H-1 over-rides temperature controller
T-12 to close outside air damper first and then c¢pens coolina coil valve
CV-2 as return air relative humidity rises above 50 percent., Humidistats
shall be adjustable to maintain space at a minimum of 35 percent relative
humidity.

(D) Relief exhaust damper maintains a positive pressure of 0.1 inch
in the system.

(E) Manual switch X-3 positions dampers as required by T-12 when set
at "normal“--when set on "emergency", bypasses temperature controller T-12
and opens outside air damper to minimum position.

Figure 5. Control Schematic AC-3

15
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(temperature of air passing through the heating coil) at the set point
by operating the heating coil control valve. An outside air duct master
modulating thermostat lowers the set point of the submaster modulating
duct thermostat as the outside air temperature rises.

Room (zone) temperature is maintained at the set point by
modulating zone thermostats which operate zone-mixing damper motors.
These dampers combine heated and cooled air in the proper proportions to
maintain the required room temperature. Return air humidity is regulated
with the outside-air intake damper, which is controlled by the modulating
duct humidistat.

3 A switch mounted on the heating coil water valve stops the air
handler hot water circulating pump when the valve reaches the closed
position (no heat input required). Water flow rate through the cooling
coil is uncontrolled since the zone mixing dampers control the air rates
A across the cooling coil. A schematic describing the operation of AC-2

3 i3 provided in Figure .

Air handling unit AC-4 is also a multi-zone unit. This air
handler provides conditioned air to six zones in the building. The unit's
controls are similar to the controls used in AC-2 except for the addition
of a load analyzer which reduces overall energy consumption. A submaster
modulating duct thermostat maintains the hot deck temperature just high
enough to satisfy the coldest zone heating requirement determined by the
load analyzer. A dual-input controller is used to maintain the ¢old
deck temperature just low enouqgh to satisfy the hottest zone cooling
requirement determined by the load analyzer. Hot deck and cold deck
temperatures are controlled by the heating coil control valve and cooling
coil control valve positions. A switch mounted on the heating coil
valve stops the air handler hot water circulating pump when the valve
reaches the closed position. .

Room (zone) temperature is mairtained at the set point by
modulating zone thermostats which operate zone mixing damper motors.
These dampers combine heated and cooled air in the proper pertions %o
mafntain the required room temperature. Return air humidity is regulated
with the outside air intake damper controlled by the modulating duct

16
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AIR CONULTTIONING UNIT AC-2 CONTROL
McClellan AFB, Ca.
Radar Approach Controi Facility

Control System for Air Conditioning Unit AC-2:

(A) Submaster modulating duct thermostat T-7 maintains hot deck tem-
perature at set point by operating heating coil control valve HV-2, OQut-
side air duct master mocdulating thermostat T-8 lowers the set point of T-7
as outside air temperature rises. Auxiliary switch on valve HV-2 stops
hot water co®l circulating pump when valve reaches the position of no heat
required.

(B) The cooling coil is not controlled.

(C}) Mixed air temperature is controlled by submaster modulating duct
thermostat T-9, which, at winter design outside temperature, operates dam-
per motor M-5 for minimum outside air and maximum return air. As outside
air temperature rises, T-9 jradually opens the outside air damper and
cluses the return air damper until the outside air damper is wide open
when the set point (approximateiy 640F) is reached. Master two-position
outside air duct thermostat T-10 reverses action of T-9 when outside air
temperature rises to 8QOF.

(D) Room temperature is maintained at set point by modulating room
thermostats T-4, T-5, and T-6, which operate zone mixing damper mctors
M~2, M-3, and M-4.

(E) Modulating duct humidistat H-2 over-rides temperature cortroller
T-9 to close outside damper as return air relative humidity rises above 50
percent. Humidistat shall be adjustable to maintain spaca at a minimum of
35 percent relative humidity.

(F} Relief exhaust damper maintains a positive pressure of 0.1 inch
in the system.

(6) Manual switch X-2 at “normal® positions dampers as required by
T-9, on "emergency" bypasses temperature controller T-9, and cpens outside
air damper to minimum position.

Figure 5. Ccnirol Schematic AC-2
17
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numidistat. A schematic describing the operation of AC-4 is provided in
Figure 7.

c. Boilers

The two natural gas fueled boilers HB-1 and HB-2 are operated
by temperature controllers located in the hot water outlet line., When
the outlet water temperature drops below the set point (190-200°F) the
temperature controller opens the main gas valve and allows fuel to be
admitted to the main burners of HB-1 or HB~2. Although piping from
each boiler is connected in serias, normal practice is to operate only
one hoiler at a time. Each boiler is equipped with the normal flame
safequard, pressure relief, and low water safety systems,

d. Water Chillers

The two equipment room installed chillers WC-1 and WC-2 (25
ton units) are started or shut down in sequence by a master chilled water
controller. The controller is set to maintain a 58° chillea water return
temperature. An adjustable time delay relay prevents more than one chiller
unit from starting at the same time. The order in which the units operate
is selected by a manual sequence transfer switch. A return-water flow
switch prevents the chiller compressors from operating when none of the
chilled water circulating pumps are running. Interlocks also prevent
each compressor from operating.

Temperature controllers shut off the cooling tower fans when
the condenser water temperature drops below 75%F . Low temperature
controllers are also used to stop the chiller units when the chiller
water discharge temperature decreases to 42°F. Other temperature
controllers placed in the chilled water discharge lines operate compressor
unloaders to maintain a 48%F output water temperature,

The third chiller WC-3 (23-ton unit) is started by the master
chilled water controller when the two 25-ton units cannot maintain the
58°F return water temperature. A sequential contrcl system opens two
motorized block valves (one in the chilled water supply line and the
other in the chilled water return line), st*rts chilled water pump CP-3,
and activates the chiller control circuit.

18
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AIR CONDITIONING UNIT AC-4 CONTROL
McCleilan Ar8, Ca.
Radar Approach Control Facility

Control System for Air Conditioning Unit AC-4:

(A) Submaster modulating duct thermostat T-7 maintains hot deck tem-
perature just high enough to satisfy coldest zone as determined by load
analyzer R-1. Auxiliary switch on valve HV-2 stops hot water coil circulating
pump when valve reaches the position of no heat required.

(B) The cooling coil is controlled by dual input controller to maintain
cold deck temperature (T-11) just Tow enough to satisfy hottest zone as
determined by load analyzer R-1.

(C}) Mixed air temperature is controlled by submaster modulating duct
thermostat T-9, which, at winter design outside temperature, operates damper
motor M-5 for minimum outside air and maximum return air. As outside air
temperature rises, T-9 gradually opens the outside air damper and closes
the return air damper until the outside air damper is wide open when the
set point (approximately 640F) is reached. Master two-position outside
air duct thermostat T-10 reverses action of T-9 when outside air temperature
rises to 80Q0F,

(D) Room temperature is maintained at set point by modulating room
thermostats which operate zone mixing damper motors in AC-4.

(E) Modulating duct humidistat H-4 over-rides temperature controller
T-9 to close outside damper as return air relative humidity rises above 50
percent. Humidistat shall be adjustable to maintain space at a minimum of
35 percent relative humidity.

(F) Relief exhaust damper maintains a positive pressure of 0.1 inch
in the system.

(G) Manual switch X-2 at "normal® positions dampers as required by
T-9,--0n "emergency" bypasses temperature controller T-9, and opens
outside air damper to minimum position.

Figure 7. Control Schematic AC-4
19
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7. DOMESTIC HNT WATER SYSTEM

Domestic hot water is produced in 4 4.5 kW (30gph) electric hot
water heater. The heater c¢ircuit is equipped with a 1/12 hp, 3 gpm hot
water circulation pump to maintain hot water at user locations.

8. MODIFICATION PROJECT SMA 62-9 )

The building HVAC system is scheduled to be modified prior to
the start of the Fuel Cell Operational Feasibility field test phase by
project SMA 62-9. This project will remove water chillers WC-1 and WC-2
and replace them with a single reciprocating-type chiller. The two
cooling towers CT-1 and CT-2 will be réplaced with two new cocling towers,
Heating boiler HB-1 will be removed and the shed-mounted unit HB-2 will
be installed in the equipment room. Reference 2 contains details of the
modification project. These changes should not affect the proposal fuel
cell installation concepts or the suitability of the proposed site for
fuel cell testing.
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SECTION III

FUEL CELL DESCRIPTION

The fuel cells which will be used in the Gas Utility 40-kW Fuel
Cell Operational Feasibility Program are designed and manufactured by
the Power Systems Division of the United Technologies Corporation (UTC).
These are phosphoric acid type fuel cells and are designed to produce

electricity and heat by an electrochemical reaction using natural gas
and air.

A detailed description of the 40-kW fuel cell is contained in the
“On-site 40-Kilowatt Fuel Cell Power Plant Model Specification" FCS-1460
Prepared for: U.S. Department of Energy and the Gas Research Institute

by the United Technologies Power Systems Division South Windsor, Conn.
(Reference 3).

A simplhhfied description is presented in this section to provide
the reader with a basic understanding of fuel cell principles and to
elaborate on the operating characteristics which must be understood before
the various site installation alternatives can be evaluated.

1.  PLANT DESCRIPTION

The 40-kW UTC fuel cell power plant is pre-packaged in a 62" wide x
78" high x 108" long enclosure which is designed for outdoor installation.
The enclosure weighs approximately 7000 pounds and is equipped with 1ift-
ing lugs to facilitate transportation. The enclosure contains all compo-
nents necessary for fuel processing, power generation, and heat recovery.

Major components of the power plant (as defined by UTC) are listed

below:

a) Fuel processor (including preprocessor)

b) Power section

¢) Thermal management subsystem (including heat recovery)

d) Power conditioner
Simplified block diagrams of the system are shown in Figures 8 and 9;
component locations within the package are shown in Figure 10; and Figure

11 shows overall dimensions of the unit. A detailed power plant schematic
is shown in Figure 12.
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Figure 8. Simplified Block Diagram of 40-kW Fuel Cell
(From Reference 3)
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Figure 9. Heat Recovery System Diagram
(From Reference 3)
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Figure 10. Major Compcnent Locations
(From Reference 3)

§2* — 108"

Figure 11. Power Plant Dimensions
(From Reference 3)
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The UTC fuel cell is designed for high fuel conversion efficiencies.
At output electrical power levels above 50% of rated capacity, approx-
imately 40% of the BTU content of the fuel is converted into electrical
energy and 40% is released in the form of recoverable by-product heat.
At lower electrical power levels, the amount of energy released as
recoverable by-product heat is reduced until no recoverable heat is
available at electrical power output levels below 20% of the rated
capacity of the machine.

Installation of the fuel cell package in a user facility is
relatively simple since connections for fuel, electrical power, water,
drains, and exhausts are minimized. Details of these interface con-
nections are fully described in Reference 3.

2. PROCESS DESCRIPTION

Natural gas or peak shaved gas is fed to the preoxidizer and
hydrodesulfurizer sections of the unit (see Figure 12) where free oxygen
and sulfur compounds are removed from the fuel. The fuel is then mixed
with steam and catalytically converted to a hydrogen rich gas in the
reformer and shift converter. The hydrogen rich gas is then electro-
chemically combined with oxygen from an external air stream in the power
section to produce a direct electrical currant and water. The unreacted
hydrogen from the power section is reacted with air in the reformer
burner to produce the thermal energy required to generate steam used in
the reformer. The direct electric current produced in the power section
is converted to a three-phase alternating current in the invertor section.

Hot exhaust gases from the reformer burner and power section are
routed to a formed plate heat exchanger (low=-grade heat exchanger). The
low=grade heat exchanger transfers heat from the exhaust gases to an
external water loop if by-product heat is to be utilized in the using
facility. If by-product heat is not required or insufficient heat is
removed by the external water loop, an air cooled heat exchanger
(condenser) is used to drop the exhaust temperature to approximately
120°F before the exhaust is discharged to the atmosphere. Steam in the

exhaust gas is condensed in either the low-grade heat exchanger and/or
condenser and piped to the power section coolant loop.
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A second source of by-product heat is obtained from water used to
control the power section temperature. The heat generated in the
electrochemical reaction process is removed by circulating water through
the power section. This water (part of which is vaporized in the power
section) is routed through two heat exchangers. The first, a formed-
plate heat exchanger (high-grade heat exchanger), provides the means to
transfer heat to a user-supplied external water loop. The second, an
airacooled heat exchanger (thermal control heat exchanger), removes excess
heat from the water/steam mixture if sufficient heat is not removed in
the user external water loop. The water/steam mixture is then piped to
a steam separator where the steam is removed and routed to the reformer.
The remaining water is combined with condensate from the exhaust gas
which was routed through the low-grade heat exchanger/air-cooled condenser
and pumped back into the power section.

Since quality (% steam vs. % water) of the steam mixture feed to
the steam separator is critical, the thermal management control system
will shut off user external water flow to the high-grade heat exchanger
if too much heat is removed in the high-grade heat exchanger.

3. BY-PRODUCT HEAT RECOVERY

As previously discussed, the low-grade heat exchanger provides a
means to transfer heat from the hot gases generated within the fuel cell
during the fuel reforming and electrochemical energy conversion processes
to a user utility system. This heat transfer is usually accomplished
through an external water loop in which water from the user facility is
pumped through the low=-grade heat exchanger and returned to the facility
at a higher temperature.

The high-grade heat exchanger provides a means to transfer heat
from the power section cooling loop to a user utility system. Heat
transfer is accomplished as described above through an external water
loop in which water from the user facility is pumped through the high-
grade heat exchanger and returned to the facility at a higher temperature.

Performance parameters for the low-grade heat exchanger are shown
in Figure 13. This figure can be used to predict the amount of heat
transfer or temperature rise of the external supply water when various
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inlet water temperatures and flow rates are known. The design point
(point used to calculate overall fuel cell thermal efficiency) is based
on heating 2.5 gpm of 80°F water to 160%F. Maximum outlet water
temperature is limited to 180°F.

Actual performance data for the high grade heat exchanger are not
presently available from UTC. However, the shape of the performance
curves should be similar for both the low=grade and high-grade heat
exchangers. The design point for the high=grade heat exchanger is based
on heating 2.0 gpm of 80%F water to 160°F. At reduced water flow rates
discharge temperatures up to 2759 are possibia. In lieu of detailed
performance curves for the high-grade heat exchanger, data shown in
Figure 14 will be used in this report to estimate the available heat
from the power section cooling loop.

As seen from Figure 13, the amount of heat which can be transferred
to an external water circuit decreases as the inlet water temperature
increases or as outlet water temperatures are increased. Consequently,
fuel cell thermal efficiency decreases under these conditions.

80 ¢~
w @ 110°F AMBIENT TEMP, 8000 HR, 6000 FT ©)
[-- )
< @ 110°F AMBIENT TEMP, 500 HR, 6000 FT
K _ W (D -25°F AMBIENT TEMP, 8900 HR, SEA LEVEL
= § @ -25°F AMBIENT TEMP, 500 HR, SEA LEVEL
< »
g5 w-
W
o -
< L]
SE 20}
@
=

0 1

0 25 59 7% 100

PERCENT OF RATED POWER 124

Figure 14, High-Grade Heat Availability
(From Reference 3)
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SECTION IV

FUEL CELL INTEGRATICN CONCEPTS

Based on the preceding descriptions of the fuel cell and Building
1099 utility systems, several methods of utilizing the electrical and
thermal output of two 40-kW fuel cell power plants are possible. The
electrical output can supply part of the buiiding's electrical needs and
by-product heat can augment the heating system or power a thermally driven
cooling system., These installation concepts are described below.

1. ELECTRICAL

The fuel cells can be tied into the building electrical system in
gither of two ways. The cells can be operated in parallel with commercial
power or tied directly to individual loads. Either methed is compatible
with building voltage-phase relationships since cell output connections
match the three-phase, foureconductor system used throughout the main
switchboard and facility.

a. Parallel Connection

In the first approach, the two cells are tied to the facility's
main switchboard through a grid connect system which is currently under
development by UTC (see Figure 15). This system will have the capability
to control up to six fuel cells in parallel operation. The UTC grid
system must, however, be modified by the addition of several specialized
electrical components.

Current sensors coupled with fast-acting automatic disconnect
switches will be required to disconnect the cells from the switchboard
during commercial power outages. If the cells are not disconnected during
these outages, the cells could essentially see an infinite load on the
commercial side of the bus. In addition, the normal building load exceeds
the combined output of the two fuel cells.

Impedance matching devices would also be required in the connect-
ing circuit. These devices will allow the output of the cells to be
delivered to the switchboard without being overridden by the much larger
capacity of the commercial power supply.
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b. Individual Bus Connection

The second metnod of connecting fuel cell electrical power to
tue facility distribution system does not require the use of specialized
alectrical components. The output from the two fuel cells would be tied
directly to specific circuits through automatic transfer switches. The
fuel cell output would be tied to one side of the automatic transfer
switch(s) and the other side would be supplied by commercial power. In
the event of a fuel cell power failure the switch(s) would automatically
reposition and the load would be carried by commercial power. The fuel
cells would continue to carry the circuit when commercial power is lost.

The fuel cells could be operated in parallel with each other
by using the UTC grid system described in Figure 15 to supply 80 kW
through one transfer switch or the cells could be set up independently
using two transfer switches with up to 40 W supplied to each switch.
The circuits to be powered by the fuel cells (operating separately or in
parallel) would be selected to match the output power capability of the
cells and be compatible with the output voltage waveforms of the cells.
The latter constraint is mentioned since total harmonic distortion of
the fuel cell waveforms is in the 5-10% range wnile generator power and
commercial power waveforms usually contain less than 2% total harmonic
distortion.

By segregating some of the loads on the emergency power and
commercial power buses with the addition of several automatic transfer
switches, the fuel cells and emergency power generastor could be used to
supply the entire building load during commercial power outages. The
segregation would also eliminate the need to operate the fuel cells in
parallel with the generator.

2. HEATING
a. Return Water

Several methods of utilizing the fuel cell thermal output in
Building 1079 are available. The simplest of these methods is to route
part of the HVAC system return hot water through the fuel <ell heat
exchangers. All piping connections would be made upstream of the existing

31
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gas fired boilers (See Figure 16). This concept would use the fuel cells
to increase the return water temperature up to the limits of the cells
and the boilers wuuld provide any additional heat required in the
facility. A major advantage of this concept is that no changes will be
required in the existing boiler control system.

Since the fuel cell formed-plate heat exchangers are designed
for small water flow rates (See Figure 13) and the HVAC hot water system
return water flow rate will approach 33 gpm, cnly a portion of the return
waier can be passed through the fuel cell heat exchangers. Figure 16a
illustrates a piping arrangement in which HVAC heating coil return water
is routed first through the low-grade heat exchangers and then through
the high-grade heat exchangers.

A variation in this scheme, shown in Figure 16b, will increase
the amount of heat transferred in the high-grade heat exchanger. In
this arrangement, a portion of the return water is routed directly to
the high-grade exchanger without passing through the low-grade heat
exchanger, This approach provides lower temperature inlet water to the
highegrade heat exchanger. As a result, the temperature difference across
the heat exchanger is increased and more heat can be transferred with
the same water flow rate.

The thermal efficiencies of these two installatinn concepts
are low. Since HVAC return water temperatures range between 150%F and
17D°F, very little heat can be transferred to the return water by the
fuel cells.

From Figure 13 only 30,000 Btu/hr per cell can be transferred
to the return water by the low-grade heat exchanger if a facility return

water temperature of 150%F is assumed. At the upper range of return .
water temperature almost no heat can be transferred by the low-grade
heat exchangers. However, some increase in heat transfer could be .

obtained by increasing the return water flow rates through the low-grade
heat exchanger. If a water flow rate of 2.5 gpm is assumed, 30,000
Btu/hr is added to the return water while an 8.0 gpm flow rate adds
43,000 Btu/hr to the return water. Final discharge temperature of the
return water would range between 158%F and 180%F with the highest
temperature produced at the lower flow rate. These heat rates are based
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on 150% return water temperature to the inlet side of the low-grade
heat exchanger,

A similar evaluation of the high-grade heat exchanger cannot
be performed since the high-gride heat exchanger performance curve is
not presently available from U"Z. For the purposes of this study the
high-grade heat exchanger will be assumed to add 50,000 Btu/hr to the
return water regardless of flow rate and return water temperature.

b. Return Air Direct Heating

Higher fuel cell thermal efficiencies can be realized if the
temperature of the facility water supplied to the fuel cell is lowered.
One method of producing this lower temperature water is to install highly
efficient air-to-water multi-pass heat exchangers in the facility return
airducts. A separate water system (not tied to the existing building
hot water system) would be used to supply fuel cell heated hot water to
the duct-mounted heaters. The cold building return air would then be
heated in these duct-mounted heat exchangers. The resulting heat exchange
would produce a lower ocutlet water temperature than the currently used
air-to-water heat exchangers.

Currently HVAC return air temperatures (See Table 2) range
from 53°F to 64°F and the air handler discharge air temperatures range
from 57%F to 81%F. These air temperatures will produce low temperature
water to the fuel cells provided the heat exchanger surface area is suf-
ficiently large. Using a 10%F differential approach temperature, the
highest return water temperature would be 91°%F.

From the low-grade heat exchanger performance curve (Figure
13), assuming 91%F return water at an 8.0 gpm rate, approximately
125,000 Btu/hr could be transferred to the return water. With these
heat rates it can be seen (from Figure 2) that adaitional heat would be
required from the existing boiler system. Figure 17 describes a concept
in which the new fuel cell heat exchangers could supply hot water to new
duct-mounted heat exchangers.
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3. COOLING
a. Absorption Chiller

Fuel cell by-product heat can be used to supplement the build-
ing cooling requirements when used in conjunction with an absorption
chiller. In this arrangement, fuel-cell-produced hot water would
evaporate the refrigerant from an absorbent fluid and the resulting
refrigeration effect could be used to remove heat from the facility
chilled water system.

The operating principle of an absorption chiller is relatively
simple. A working fluid (ex. lithium bromide/water solution) is first
pumped through a heat exchanger where the fluid is preheated by the hot
absorbent (lithium bromide) returning from the generator section of the
unit. Additional heat is added to the working fluid in the generator
section by hot water supplied from an external source (in this case,
fuel cells). This additional heat drives the refrigerant (water) from
the absorbent (lithium bromide solution). The hot lithium bromide then
flows to the absorber through a liquid/1iquid heat exchanger and the
vaporized refrigerant flows to the condenser. The latent heat of
vaporization is removed from the refrigerant by condenser water flowing
through the condenser tubes. The condensed refrigerant then passes
through a metering device into the evaporator section where heat from an
external chilled water circuit (building chilled water system) is
absorbed by the refrigerant. This heat vaporizes the refrigerant. The
refrigerant vapor and absorbent are then re-combined fluid (Tithium
bromide/water solution) flows back to the circulation pump to re-
initiate the cycle.

A number of companies are not involved in the manufacture of
small absorption chillers which could be operated with fuel-cell-heated
water. One of these units, which is manufactured for operation with
solar-heated water, has heat input requirements which match the 40-kW
fuel cell thermal output. The unit is prepackaged in a 29" x 30" x 68"
cabinet with connections for hot water, chilled water, condenser cooling
water, and electrical input. This unit can easily be integrated into
the RAPCON chilled water system.
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By routing approximately 7.0 gpm of facility HVAC chilled water
through the absorption chiller cooling coils, three tons (per 40-kW fuel
cell) of refrigeration effect can be achieved. The chilled water would
be obtained from the existing chilled water return line just upstream of
the existing chillers. The water after passing through the absorption
chiller would be reinjected into the system upstream to the existing
water chillers and downstream of the "take out" connection. The hot
water needed to drive the absorption chiller would be supplied by the
fuel cells in a manner similar to that described in subsection 2 of
Section IV where the fuel cell was used to supplement the facility hot
water system. Condenser water for the absorption chiller condenser
coils can be supplied by the existing facility cocoling towers with only
minor modifications to the cooling tower piping system.

Performance curves for a typical absorption chiller in this
size range indicate that as the temperature of the water supplied to the
gemerator coils increases the refrigeration capacity increases. For a
three=ton refrigeration effect, 11 ipm of 195% fuel-cell-heated water
will be required. Since the return water temperature from the generator
to the fuel cell is relatively high (185°F), only heat from the high-
grade heat exchanger can be utilized (Thermal stresses limit the Tow=
grade heat exchanger to a maximum 180°F delivered water temperature).

With two fuel cells, six tons of refrigeration can be delivered
to the building. This capacity is based on the 50,000 Btu/hr assumed
heat rate for the high-grade heat exchanger since the actual heat
exchanger performance curves are not available at this time.

Figure 18 illustrates a method for using two such absorption
chillers and two 40<kW fuel cells to supplement the building cooling
load.

b. Jet Refrigeration

An alternative method of using fuel cell by-product heat to
supplement the facility cooling load would be to drive a vapor jet
refrigeration cycle. This cycle is similar to the standard single fluid,
compressor-driven, refrigeration cycle except the compressor is replaced
by a vapor-jet pump. The vapor-jet pump refrigeration cycle employs a
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pump to pressurize the working fluid and heat from an external source
(in this case, fuel cell heat) to vaporize the fluid. The high pressure
saturated vapor is expanded through a convergent/divergent nozzle into a

g
F -

mixing chamber then exhausted through the diffuser section to a condenser.

Part of the condensed fluid is recycled to the pressurizing pump and the

remaining fluid is admitted into an evaporator through an expansion valve.

Heat is the absorbed from the facility HVAC chilled water system in the
avaporator which in turn vaporizes the working fluid. The vaporized
fluid is drawn into a mixing chamber and re-combined with the fluid vapor
passing through the convergent/divergent nozzle.

Coefficients of performance for this system are similar to
absorption chiller coefficients of performance. Operating temperatures
of the external heat source are also similar. As a result, only the
fuel cell high-grade heat exchangers can be used to supply hot water to
the vapor-jet pump heating loop. Approximately six tons (combined output
from two fuel cells) of refrigeration can be produced with the jet pump
refrigeration system.

A detailed description of the vapor-jet pump cycle is contained

in a NASA Technical Support Package on "Solar Powered Jet Refrigerator"
(see Reference 4).

Integration of the vapor-jet pump refrigeration system into
the HVAC system would be accomplished in a manner similar to the method
described in paragraph 3 for the absorption chiller units,
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SECTION V
INSTRUMENTATION

Data acquisition requirements for the 40-kW Fuel Cell Operational
Feasibility Program have been specified by the DOE/Gas Research Institute
Fuel Cell Planning Committee. These requirements define standardized
instrumentation which will be used for the two test phases of this
program, ‘

During the first phase or pre-installation period, the candidate
test sites will be instrumented to record thermal and electrical load
requirements as well as site environmental conditions. This data will
be taken over a one year time period. In cases where the test facilities
have not been constructed, the committee indicated that similar buildings
can be instrumented to provide the required data. The McClellan test
site, however, is operational and could be instrumented at any convenient
time. The following general parameters will be recorded during the pre-
installation period:

1) Outdoor temperature

2) Indoor temperature

3) Thermal energy consumption rate and its use temperature
4) Electrical consumption rate

5) Gas consumption

The instrumentation must also permit time referencing of the
recorded data in order to accurately compare fuel cell electrical and
thermal output with facility electrical and thermal power requirements.
For instance, if facility electrical requirements are high when thermal
requirements are low, full use of the fuel cel. thermal energy may not
be realized and overall energy utilization of the fuel cells could be
Tower than some other method of supplying energy to the facility. The
converse could also be true if facility thermal requirements are high
when electrical requirements are low.

The data shown in Table 1 for the McClelian facility will satisfy
most of the pre-installation data recording requirements and this data
is used in the report to evaluate fuel cell energy output against
facility energy requirements.
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For the second phase or field test program phase additional data
acquisition requirements pertain to the performance of the fuel cells
and are listed below:

1) KVA output of the fuel cell
' 2) Gas input to the unit
3) Available thermal energy
4) Thermal energy used and use temperature
5) Elactrical input to the fuel cell
6) Various internal fuel cell measurements

Table 3 (excerpted from the "Fuel Cell Operational Feasibility
Program Plan" subsection “Data Acquisition System" (Reference 5))
specities these data points in more detail ana gives the required sampling
fraquency. A1l program participants will utilize this data recording
format and record the data on magnetic tape for submission to the Gas
Research Institute (GRI). In turn, GRI will analyze the data and submit
reports to the program participants.

The data acquisition equipment to be used by all program participants
in the two test phases of the program are defined in Reference 5.
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SECTION VI
FUEL CELL MODIFICATIONS

Several potentially desirable fuel cell modifications were identified
during the course of this study. Since these modifications could benefit
fuel cell users, they are presented here for future consideration.

1.  WATER PUMP MECHANICAL SHAFT SEALS

UTC personnel have indicated that fuel cell water pump mechanical
shaft seals exhibited shorter life than anticipated during the prototype
testing phase conducted in the South Windsor Facility. This problem
could possibly be eliminated by using a water pump that does not require
a shaft seal, such as the magnetic drive or canned mector pump.

The magnetic drive pump rotor is magnetically coupled to the electric
motor driver, thus eliminating the necessity to extend a drive shaft
through the pump housing. The submerged motor or canned motor pump places
the alectric motor rotor in contact with the pumped fluid and requires
no drive shaft extension to be sealed. Both types of pumps are com-
mercially available.

2.  EXHAUST GAS FANS

Since the fuel cells are equipped with small combustion gas and air
cocled heat exchanger fans (for energy conversion purposes), the facility
exhaust ducting must impose no back pressure on the fuel cell exhaust
system. As a result, installation of the cells at convenient locations
within a facility may not be possible because of the necessity to use
long runs of exhaust ducting or the inability to install large-diameter
ducting to reduce the pressure drop. In these cases the user could
benefit from larger fuel cell exhaust fans.

3. HIGH GRADE HEAT EXCHANGER SOLENOID OPERATED VALVE

The high-grade heat sxchanger uses a two way (open/close) solenoid-
operated valve to control the user water flow rate through the heat
exchanger. This valve precludes the user from transferring excessive
heat f-om the high grade heat exchanger which would shut down the fuel
cell. Valve positions are either fully open or fully closed. When closed
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all user water flow is stopped, but in many fuel cell installation
schemes this on/off water flow is undesirable., Two design changes are
presented below which could eliminate this problem.

One possibility is to locate a solenoid operated three-way valve on
the inlet side of the high grade~heat exchanger. When the existing fuel
cell control system sends a signal to stop water flow through the heat
exchanger, the valve would close the inlet but open a discharge port and
aliow the waier to by-pass the highegrade heat exchanger and return to
the user system. Water flow rates in the user system would remain
constant, however, heat would nat be added with the valve in the by-pass
position,

The second approach would send a variable position signal to the
three-way valve. This would allow varying amounts of water to flow
through the high-grade heat exchanger depending on available excess heat
while the remaining water would by-pass the heat exchanger and flow to the
user system. This approach would also allow a constant water flow through
the user system but would allow transfer of all available excess heat
from the fuel cell.

4. LOW GRADE HEAT EXCHANGER

The mechanical design of the low grade heat exchanger limits outlet
water temperatures to a maximum of 180%F. A number of users would
benefit from higher water temperatures. By replacing the existing heat
exchanger with one designed to allow higher outlet water temperatures, a
more versatile system would be available.
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SECTION VII
EVALUATION OF INTEGRATION CONCEPTS

A1l of the fuel cell installation concepts described in Section IV
can supplement the building electrical, heating, and cooling loads;
however, operating costs, installation costs, building utility system
reliability, and total energy consumption can vary considerable. Each
of these integration concepts is evaluated below.

1. ELECTRICAL

Two installation concepts were presented in subsection 1 of Section
IV for connecting fuel cell electrical output to the facility electrical
system. One concept operated the fuel cells in parallel with the existing
commercial power system, the other connected individual load buses to
the fuel cells.

Operating costs associated with either of these concepts are
identical since fuel consumption is based on electrical power output
rather than the method used to connect the cells to the facility
electrical load. In the Sacramento area the actual cost to produce
electrical power with the fuel cell will exceed the cost of purchasing
power from commercial sources. Commercial power in Northern California
is obtained from hydroelectric power plants which can produce power at a
much lower cost than hydrocarbon fueled plants. Based on 1979 utility
rates (the latest available form the McClellen Facility), 1 kWH of fuel
cell produced power would cost $.0415 while the same amount of commercial
power can be purchased for §$.0190. However, fuel cell by-product heat
utilization would compensate for part of the rate differential,

Facility installation costs are significantly different for the two
concepts. By connecting fuel cells in parallel with commercial power,
sophisticated impedence matching circuits, auto-transfer switches,
paralleling equipment, and current sensors will be required. These
components must be specifically designed for the system as opposed to
standard components which can be used in the direct-lcad-connect option.
The nigh procurement and installation costs for these special components
would not be justified.
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Utility system reliability would not be enhanced with paraliel
connected system. Since the facility loads are greater than the 80 kW
produced by the fuel cells, any loss of commercial power would overload
the fuel cells. In addition the sophisticated electrical components
required for this mode of operation would increase the likelihood of
equipment failure,

The direct-load-connection concept, on the other hand, would not
overload the fuel cells during commercial power failure. This method of
using fuel cell power could also allow operation of the entire building
electrical system during conmercial power failures (emergency generator
plus fuel cell power can carry the full building electrical load). An
added advantage is that fuel cell failures wou'd not disrupt facility
operation because automatic transfer switches would switch to either
commercial power or emergency generator power after cell faild The
direct connection method of operation would allow maintenance of the
fuel cells without affecting normal building operation.

The fuel cells would be continuously operated at maximum electrical
output with either connection arrangement since the minimum required
building electrical load always exceeds the combined output of two 40-kW
fuel cells.

2. HEATING

Three installation concepts for utilizing fuel cell by-product heat
were described in subsection 2 of Section IV. Two concepts supply heat
directly to the existing hot water return system while the third method
requires installation of a separate hot water system and the installation
of heat exchangers in the air distribution system.

Operatiing costs (fuel costs) for all three of these concepts would
be identical since the fuel cells would be operated at maximum electrical
output. However, total energy utilization and consequently the amount
of additional fuel required tc satisfy the facility thermal needs would
be different.

With the two return.water heating concepts, between 80,000 and
93,000 BTU/4R could be supplied to the building heating system (reference
Section IV.2.1). On the other hand, 175,000 8TU/HR (125,000 BTU/HR from
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the low=grade heat exchanger and 50,000 BTU/HR from the high-grade heat
exchanger, reference Section IV.2.2) could be supplied by directly heating
the building return air in the duct-mounted heat exchangers. Table 5
shows utility costs associated with each installation concept.

Installation costs for the new duct-mounted heat exchangers would
be prohibitive since the assumed heat transfer rate requires large heat
transfer surface areas and extensive air duct modifications. The large
heat exchangers would be required to heat the return air with the low
temperature hot water produced by the fuel cell. Installation costs
would be small for the two return water heating concepts since only minor
piping modifications are required. Heating system reliability would not
be affected by any of these concepts since these systems would operate
in parallel with the existing heating system.

3. COOLING

Two methods were discussed in subsection 3 of Section IV to augment
the building's cooling system by using fuel cell by-product heat. One
method used by-product heat to drive an absorption chiller and the other
used by-product heat to drive a vapor-jet refrigeration system. Facility
installation costs for either of these two systems would be essentially
the same., The cost of the vapor-jet refrigeration machine, however,
cannot be determined since the device is not commercially available at
this time. Either system would be relatively simple to integrate into
the HVAC system since a minimum of facility changes would be required.
The primary advantage of using by-product heat for building cooling is
to offset fuel cell operating costs. Since the building heating load is
low during the summer months, all of the thermal output of the cells
cannot be used to augment the building hot water system and the by-product
heat would have to be rejected to the atmosphere through the air-cooled
heat exchangers.

The absorption chiller and vapor-jet systems require essentially
the same amount of fuel cell by-product heat and will produce
approximately six tons of refrigeration with two operating fuel cells.
Operating costs for either system, therefore, will be approximately the
same., Based on 0.746 kWH/TON of cooling and 1979 utility rates,
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approximately $61.25 per month of purchased electrical power could be
saved by using by-product heat to augment the cooling system load.

Building cooling system reliability will not be reduced with either

approach since these systems would be operated in parallel with the
existing cooling system,

TABLE 5
TOTAL UTILITY COST CCMPARISON

Month Total Utility Costs
in (Gollars)
1973
(1) (2) (3) (4) (5)
Jan 2550 3228 2525 3485 3228
Feb 2713 3326 2651 3552 3325
Mar 1951 2630 2500 2911 2630
Apr 1919 276 2451 2818 2576
May 1749 2523 2523 2687 2329
Jun 1797 2665 2665 2697 2238
Jul 1522 2621 2621 2557 2269
Aug 1526 2571 2571 2507 2194
Sep 1830 2679 2679 2729 2290
Oct 1876 2552 2552 2804 2552
Total | 19,433 (27,372 |25,739 |28,746 | 25,632

Present facility (from Table 1)

Assumes 80,000 BTU/hr recovered by-product heat from each fuel cel
(Constant maximum electrical output).

Assumes 175,000 BTU/hr recovered by-product heat from each fuel cell
(heat exchangers in return-air ducts and constant maximum electrical
output).

Assumes highegrade heat to absorption chillers, 43,000 B8TU/hr low=
grade heat to return hot water and constant maximum electrical
output.

Assumes thermal load following mode of operation.
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SECTION VIIX
IMPLEMENTING ORGANIZATIONS (SELECTION)

If the McClellan Facility is selected as the fuel cell demonstration
site, two additional tasks must be accomplished. Detailed installation
specifications must be developed for the selected installation scheme
and a construction organization must be chosen. Either or both of these
tasks can be accomplished by the McClellan Civil Engineering unit or by
an ocutside contractor.

The advantages/disadvantages of these two options are discussed
pelow. The base civil engineering organization is already on site and
familiar with the facility. If the civil engineering organization is
chosen to install the fuel cells, the level of detail required in the
installation specifications could be reduced since a formal contract
would not be required. Coordination of construction activities between
the facility using organization and the base civil engineering
organization would be simpler than between the user and an outside
contractor. Base civil engineering personnel will be in a better
pcsition to operate and maintain the fuel cells during the test program,
if that organization prepares the installation specifications and
installs the fuel ceills,

If an outside contractor is involved in any phase of the project,
additional time will be required to develop a higher level of detail in
the installation specifications. On the other hand, these detailed
specifications would provide a better record of the facility
modifications. In general, use of an outside contractor would increase
the cost of these two phases of the project.
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SECTION IX
CONCLUSIONS/RECOMMENDATIONS
1.  SITE SUITABILITY

The McClellan AFB RAPCON Facility is judged to be an acceptable
site to use in the National Fuel Cell Operational Feasibility Program.
This judgment is based on the following considerations:

a) Fuel cell thermal and electrical output can be integrated
into the existing facility utility system without reducing the reliability
of the facility. This is accomplished by operating the fuel cells in
parallel with the existing utility system.

h) The facility can utilize the entire electrical output and
most of the by-product heat produced by the two 40=kW fuel cells.

c) The required modifications are relatively simple and
inexpensive.

) d) The moderate climate will permit outdoor installation of
the fuel cells.

e) There are no access or space limitations associated with
this facility.

f) Skilled manpower is available to install and operate tne
cells,
2. QTHER CONSIDERATIONS

Although facility operating (fuel) costs will be slightly increased
if the fuel cells are installed in the RAPL.." facility, this disadvantage
is considered small when weighed against the fuel cell field test
objectives and the parameters listed in subsection 1 of Section IX,

3.  RECOMMENDED INSTALLATION CONCEPT

In Section 1V basic installation concepts were presented which use
fuel cell by-product heat in the building heating and cooling systems as
well as supply electrical power to the facility. Each installation
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concept offered certain advantages; however, overall test program

objective would be better satisfiad by employing the installation schemes

described in Sections IV.1.2 and IV.2.1. These ara:

a) Connect the electrical output of the fuel celis to

individual load buses through automatic transfer switches. Bus selections
r would be based on using the full 40~kW output of each fuel cell and the
fuel cells would not be operated in parallel with each other or any other
power source,

b) Connect the fuel cell high-grade and low-grade heat
exchangers to the existing facility hot water return line as shown in
Figure 16b.

¢) Locate the fuel cells on a small concrete pad outside of
the east wall of the building.

L
P

5%, These recommendations are based on achieving the fuel cell field
33 test objectives at minimum program cost, simplifying the installation
3

scheme to reduce the risk of non-fuel=cell related equipment failure,
and minimizing the building modification effort.

(Rl et i)

AR

L

Use of fuel cell by-product heat to cool the building is not recom-
mended at this time since additional equipment and capital costs would
be added to the project without producing any useful fuel cell performance
data.

4. PROJECT IMPLEMENTATION

Development of the detailed installation specifications and
performance of the field construction activities should be assigned to
the McClellan Civil Engineering Unit. It is felt that these functions
can be accomplished in the most expeditious manner and at a lower cost

v by using base ¢ivil engineering versus using an outside civilian con-
tractor. nis assumption, however, is dependent on the workload and
A unit manning at the time the fuel cell work in initiated.
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